k-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of Kn

نویسندگان

  • József Balogh
  • Gelasio Salazar
چکیده

We use circular sequences to give an improved lower bound on the minimum number of (≤ k)– sets in a set of points in general position. We then use this to show that if S is a set of n points in general position, then the number (S) of convex quadrilaterals determined by the points in S is at least 0.37533 ` n 4 ́ + O(n). This in turn implies that the rectilinear crossing number cr(Kn) of the complete graph Kn is at least 0.37533 ` n 4 ́ + O(n), and that Sylvester’s Four Point Problem Constant is at least 0.37533. These improved bounds refine results recently obtained by Ábrego and Fernández–Merchant, and by Lovász, Vesztergombi, Wagner and Welzl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bounds for the Number of (<=k)-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of Kn

We use circular sequences to give an improved lower bound on the minimum number of (≤ k)-sets in a set of points in general position. We then use this to show that if S is a set of n points in general position, then the number (S) of convex quadrilaterals determined by the points in S is at least 0.37553 ( n 4 ) +O(n). This in turn implies that the rectilinear crossing number cr(Kn) of the comp...

متن کامل

Convex Quadrilaterals and k-Sets

We prove that the minimum number of convex quadrilaterals determined by n points in general position in the plane – or in other words, the rectilinear crossing number of the complete graph Kn – is at least ( 38 + 10 −5) ( n 4 ) +O(n). Our main tool is a lower bound on the number of (≤ k)-sets of the point set: we show that for every k ≤ n/2, there are at least 3 ( k+1 2 ) subsets of size at mos...

متن کامل

New Lower Bounds for the Number of (<=k)-Edges and the Rectilinear Crossing Number of Kn

We provide a new lower bound on the number of (≤ k)-edges of a set of n points in the plane in general position. We show that for 0 ≤ k ≤ bn−2 2 c the number of (≤ k)-edges is at least Ek(S) ≥ 3 ( k + 2 2 ) + k ∑ j=b3 c (3j − n + 3), which, for b3 c ≤ k ≤ 0.4864n, improves the previous best lower bound in [11]. As a main consequence, we obtain a new lower bound on the rectilinear crossing numbe...

متن کامل

Recent developments on the number of ( ≤ k ) - sets , halving lines , and the rectilinear crossing number of Kn . Bernardo

We present the latest developments on the number of (≤ k)-sets and halving lines for (generalized) configurations of points; as well as the rectilinear and pseudolinear crossing numbers of Kn. In particular, we define perfect generalized configurations on n points as those whose number of (≤ k)-sets is exactly 3¡k+1 2 ¢ for all k ≤ n/3. We conjecture that for each n there is a perfect configura...

متن کامل

On the structure of sets attaining the rectilinear crossing number ∗

We study the structural properties of the point configurations attaining the rectilinear crossing number cr(Kn), that is, those n-point sets that minimize the number of crossings over all possible straight-edge embeddings of Kn in the plane. As a main result we prove the conjecture that such sets always have a triangular convex hull. The techniques developed allow us to show a similar result fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2006